Бернулли уравнение - définition. Qu'est-ce que Бернулли уравнение
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Бернулли уравнение - définition

СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Бернулли уравнение

БЕРНУЛЛИ УРАВНЕНИЕ         
связывает скорость и давление в потоке идеальной несжимаемой жидкости при установившемся течении. Бернулли уравнение выражает закон сохранения энергии движущейся жидкости. Широко применяется в гидравлике и технической гидродинамике. Выведено Д. Бернулли в 1738.
Бернулли уравнение         
I Берну́лли уравне́ние

дифференциальное уравнение 1-го порядка вида:

dy/dx + Py = Qyα,

где Р, Q - заданные непрерывные функции от x; α - постоянное число. Введением новой функции z = y--α+1 Б. у. сводится к линейному дифференциальному уравнению (См. Линейные дифференциальные уравнения) относительно z. Б. у. было рассмотрено Я. Бернулли в 1695, метод решения опубликован И. Бернулли в 1697.

II Берну́лли уравне́ние

основное уравнение гидродинамики (См. Гидродинамика), связывающее (для установившегося течения) скорость текущей жидкости v, давление в ней р и высоту h расположения малого объёма жидкости над плоскостью отсчёта. Б. у. было выведено Д. Бернулли в 1738 для струйки идеальной несжимаемой жидкости постоянной плотности ρ, находящейся под действием только сил тяжести. В этом случае Б. у. имеет вид:

v2/2 + plρ + gh = const,

где g - ускорение силы тяжести. Если это уравнение умножить на ρ, то 1-й член будет представлять собой кинетическую энергию единицы объёма жидкости, а др. 2 члена - его потенциальную энергию, часть которой обусловлена силой тяжести (последний член уравнения), а др. часть - давлением p. Б. у. в такой форме выражает закон сохранения энергии. Если вдоль струйки жидкости энергия одного вида, например кинетическая, увеличивается, то потенциальная энергия на столько же уменьшается. Поэтому, например, при сужении потока, текущего по трубопроводу, когда скорость потока увеличивается (т.к. через меньшее сечение за то же время проходит такое же количество жидкости, как и через большее сечение), давление соответственно в нём уменьшается (на этом основан принцип работы расходомера Вентури).

Из Б. у. вытекает ряд важных следствий. Например, при истечении жидкости из открытого сосуда под действием силы тяжести (рис. 1) из Б. у. следует:

v2/2g = h или

т. е. скорость жидкости в выходном отверстии такова же, как при свободном падении частиц жидкости с высоты h.

Если равномерный поток жидкости, скорость которого v0 и давление p0, встречает на своём пути препятствие (рис. 2), то непосредственно перед препятствием происходит подпор - замедление потока; в центре области подпора, в критической точке, скорость потока равна нулю. Из Б. у. следует, что давление в критической точке p1 = p0 + ρv20/2. Приращение давления в этой точке, равное p1 - p0 = ρv20/2, называется динамическим давлением, или скоростным напором. В струйке реальной жидкости её механическая энергия не сохраняется вдоль потока, а расходуется на работу сил трения и рассеивается в виде тепловой энергии, поэтому при применении Б. у. к реальной жидкости необходимо учитывать потери на сопротивление.

Б. у. имеет большое значение в гидравлике (См. Гидравлика) и технической гидродинамике: оно используется при расчётах трубопроводов, насосов, при решении вопросов, связанных с фильтрацией, и т.д. Бернулли уравнение для среды с переменной плотностью р вместе с уравнением неизменяемости массы и уравнением состояния является основой газовой динамики (См. Газовая динамика).

Лит.: Фабрикант Н.Я., Аэродинамика, ч. 1-2, Л.,1949- 64; Угинчус А. А., Гидравлика, гидравлические машины и основы сельскохозяйственного водоснабжения, К.-М., 1957, гл. V.

Рис. 1. Истечение из открытого сосуда.

Рис. 2. Обтекание препятствия.

Закон Бернулли         
  • Иллюстрация формулы Торричелли
  • Закон Бернулли объясняет [[эффект Вентури]]: в узкой части трубы скорость течения жидкости выше, а давление меньше, чем в широкой части
ФИЗИЧЕСКИЙ ЗАКОН, СВЯЗЫВАЮЩИЙ ДАВЛЕНИЕ И СКОРОСТЬ В ТЕКУЩЕЙ ЖИДКОСТИ
Эффект Бернулли; Принцип Бернулли; Интеграл Бернулли; Уравнение Бернулли (гидроаэромеханика); Формула Сен-Венана — Ванцеля
Зако́н Берну́лли (также уравне́ние Берну́лли, теоре́ма Берну́лли или интегра́л Берну́лли) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот.

Wikipédia

Уравнение Бернулли

Уравнение Бернулли:

  • Закон Бернулли — закон сохранения энергии для жидкостей и газов.
  • Дифференциальное уравнение Бернулли — вид дифференциального уравнения.
Qu'est-ce que БЕРНУЛЛИ УРАВНЕНИЕ - définition